Order-weakly Compact Operators from Vector-valued Function Spaces to Banach Spaces

ثبت نشده
چکیده

Let E be an ideal of L0 over a σ-finite measure space (Ω,Σ, μ), and let E∼ stand for the order dual of E. For a real Banach space (X, ‖ · ‖X ) let E(X) be a subspace of the space L0(X) of μ-equivalence classes of strongly Σ-measurable functions f : Ω −→ X and consisting of all those f ∈ L0(X) for which the scalar function ‖f(·)‖X belongs to E. For a real Banach space (Y, ‖ · ‖Y ) a linear operator T : E(X) −→ Y is said to be order-weakly compact whenever for each u ∈ E+ the set T ({f ∈ E(X) : ‖f(·)‖X ≤ u}) is relatively weakly compact in Y . In this paper we examine order-weakly compact operators T : E(X) −→ Y . We give a characterization of an order-weakly compact operator T in terms of the continuity of the conjugate operator of T with respect to some weak topologies. It is shown that if (E, ‖ · ‖E ) is an order continuous Banach function space, X is a Banach space containing no isomorphic copy of l1 and Y is a weakly sequentially complete Banach space, then every continuous linear operator T : E(X) −→ Y is order-weakly compact. Moreover, it is proved that if (E, ‖ · ‖E ) is a Banach function space, then for every Banach space Y any continuous linear operator T : E(X) −→ Y is order-weakly compact iff the norm ‖ · ‖E is order continuous and X is reflexive. In particular, for every Banach space Y any continuous linear operator T : L1(X) −→ Y is order-weakly compact iff X is reflexive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions

We characterize compact composition operators on real Banach spaces of complex-valued bounded Lipschitz functions on metric spaces, not necessarily compact, with Lipschitz involutions and determine their spectra.

متن کامل

Operator Valued Series and Vector Valued Multiplier Spaces

‎Let $X,Y$ be normed spaces with $L(X,Y)$ the space of continuous‎ ‎linear operators from $X$ into $Y$‎. ‎If ${T_{j}}$ is a sequence in $L(X,Y)$,‎ ‎the (bounded) multiplier space for the series $sum T_{j}$ is defined to be‎ [ ‎M^{infty}(sum T_{j})={{x_{j}}in l^{infty}(X):sum_{j=1}^{infty}%‎ ‎T_{j}x_{j}text{ }converges}‎ ‎]‎ ‎and the summing operator $S:M^{infty}(sum T_{j})rightarrow Y$ associat...

متن کامل

On the character space of Banach vector-valued function algebras

‎Given a compact space $X$ and a commutative Banach algebra‎ ‎$A$‎, ‎the character spaces of $A$-valued function algebras on $X$ are‎ ‎investigated‎. ‎The class of natural $A$-valued function algebras‎, ‎those whose characters can be described by means of characters of $A$ and‎ ‎point evaluation homomorphisms‎, ‎is introduced and studied‎. ‎For an‎ ‎admissible Banach $A$-valued function algebra...

متن کامل

Linear operators of Banach spaces with range in Lipschitz algebras

In this paper, a complete description concerning linear operators of Banach spaces with range in Lipschitz algebras $lip_al(X)$ is provided. Necessary and sufficient conditions are established to ensure boundedness and (weak) compactness of these operators. Finally, a lower bound for the essential norm of such operators is obtained.

متن کامل

Bilateral composition operators on vector-valued Hardy spaces

Let $T$ be a bounded operator on the Banach space $X$ and $ph$ be an analytic self-map of the unit disk $Bbb{D}$‎. ‎We investigate some operator theoretic properties of‎ ‎bilateral composition operator $C_{ph‎, ‎T}‎: ‎f ri T circ f circ ph$ on the vector-valued Hardy space $H^p(X)$ for $1 leq p leq‎ ‎+infty$.‎ ‎Compactness and weak compactness of $C_{ph‎, ‎T}$ on $H^p(X)$‎ ‎are characterized an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007